The Rich Earth Institute has enlisted a network of volunteers around Brattleboro, who drop off their donations at specially designated depots or, in some cases, pay to have their pee picked up. After it has been pasteurized, the urine is distributed to local farmers. Peecycling can cut down on the amount of conventional fertilizer that the farmers purchase. (Urine contains not only phosphorus but also large amounts of nitrogen and potassium.) At the same time, it keeps nutrients out of the sewage system and, by extension, it is hoped, out of Vermont’s waterways.

“There is no ‘away’ when it comes to nutrients,” Davis said. “We’re always putting them somewhere. So we can either choose to set up systems where we’re reusing them in useful ways or they’re going to go into Lake Champlain and cause all of these problems.”

Davis had arranged for us to meet up with a pair of volunteers in the town of Rockingham, just north of Brattleboro. He grabbed a container that had been sitting under one of the urine-diverting toilets. I poured in the pee that I had brought, and we set off. The peecyclers, Laurel Green and Steve Crofter, were waiting for us at the Rockingham depot, along with a few five-gallon jugs of their output.

“Practicing what we pee,” Green said, when I asked why she became involved with the institute. (During my visit to Vermont, I heard endless pee-related puns; one of my favorites was “Pee the change you want to see in the world.”)

A sign outside the depot read “Help us ensure this program is flushed with success.” Inside, Crofter lowered a pipe attached to a vacuum pump into his and Green’s jugs, which were soon empty. Davis explained that the pee had been sucked into a holding tank. When that was full, the institute would cart off the contents.

On an annual basis, the Rich Earth Institute processes about twelve thousand gallons of urine, which is a lot of pee to truck around and, at the same time, barely a drop in the proverbial bucket. In an average year, New York City residents piss out about a billion gallons; Shanghai residents, three billion. “The scaling-up question—there’s a lot to that question,” Davis acknowledged.

In the final chapter of “The Devil’s Element,” Egan goes looking for ways to address both sides of the phosphorus problem. Peecycling gets a nod, as do techniques for stripping phosphorus from the wastewater that runs through sewage-treatment plants. Manure, too, Egan argues, could be more efficiently harvested for its nutrients; in that way, less phosphorus would end up in lakes and rivers and more in next year’s crops. “The potential benefits to better managing manure are staggering,” he writes.

At one point, Egan consults with Jim Elser, a professor of ecology at the University of Montana and the director of a group called the Sustainable Phosphorus Alliance. Elser tells him that if every bit of manure on the planet were recycled—cows, pigs, and chickens produce some four billion tons annually—it could cut the demand for mined phosphorus by half. Of course, even in this best-case scenario, the problem would be only half solved.

As it happens, Elser has written his own book, “Phosphorus: Past and Future” (Oxford), together with a British soil scientist, Phil Haygarth. The two researchers coin the term “phosphogeddon,” to refer to expanding dead zones and the threat of oceanwide anoxia. Fully addressing the problem, they say, will demand not just recycling nutrients but remaking global agriculture from the ground up.

On the phospho-cheery side, Elser and Haygarth have plenty of ideas about how this might be done. The crop varieties that powered the Green Revolution tend to require lots of “inputs”; new varieties that use phosphorus more efficiently could be bred, at least in theory. In the U.S., something like ten per cent of all fertilizer is applied to corn that’s converted into biofuels. In terms of CO2 emissions, corn-based biofuels are probably worse than gasoline; getting rid of them would thus benefit both the climate and the country’s waterways. Globally, it’s estimated that a third of all food gets thrown away. (In the U.S., the figure may be closer to forty per cent.) Reducing the amount of food waste would reduce the need for phosphorus by a similar proportion.

“It’s clear that there is no ‘silver bullet,’ ” Elser and Haygarth observe. “It’s going to take a ‘silver shotgun blast’ to hit all of the targets that need to be hit.”

How likely is it that the world will mobilize in time for such a “blast”? “We’re not going to sugarcoat it,” Elser and Haygarth write. “There are many in the water quality/phosphorus management communities who think that phosphogeddon is, indeed, where we’re heading and where we will end up. We will confess that, in the dark of night, both of us will often resign ourselves to the fact that our children and grandchildren will suffer these outcomes.”

When Humboldt lugged his sack of bird shit to Europe, it seems safe to say, he had no idea what lay ahead—the wrecking of the guano islands, the Bou Craa conveyor belt, the war in Western Sahara, aquatic dead zones, and, potentially, phosphogeddon. This is the hazard of innovation. Short-term solutions often turn out to have long-term costs. But, by the time these costs have become apparent, it’s too late to reverse course. In this sense, the world’s phosphorus problem resembles its carbon-dioxide problem, its plastics problem, its groundwater-use problem, its soil-erosion problem, and its nitrogen problem. The path humanity is on may lead to ruin, but, as of yet, no one has found a workable way back.